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Abstract
Inflammatory bowel disease (IBD) is a group of chronic intestinal inflammatory disorders with a prolonged duration char-
acterized by recurrent relapse and remission. The exact etiology of IBD remains poorly understood despite the identifica-
tion of relevant risk factors, including individual genetic susceptibility, environmental triggers, and disruption of immune 
homeostasis. Dysbiosis of the gut microbiota is believed to exacerbate the progression of IBD. Recently, increasing evidence 
has also linked oral microbiota dysbiosis with the development of IBD. On the one hand, IBD patients show significantly 
unbalanced composition and function of the oral microbiota known as dysbiosis. On the other, overabundances of oral com-
mensal bacteria with opportunistic pathogenicity have been found in the gut microbiota of IBD patients. Herein, we review 
the current information on the causative factors of IBD, especially recent evidence of IBD-associated oral microbiota dys-
biosis, which has seldom been covered in the previous literature review, highlighting the pathogenic mechanisms of specific 
oral bacteria in the development of IBD. Ectopic colonization of several oral bacteria, including a subset of Porphyromonas 
gingivalis, Streptococcus mutans, Fusobacterium nucleatum, Campylobacter concisus, and Klebsiella pneumoniae, may 
lead to destruction of the intestinal epithelial barrier, excessive secretion of inflammatory cytokines, disruption of the host 
immune system, and dysbiosis of gut microbiota, consequently aggravating chronic intestinal inflammation. Studying oral 
microbiota dysbiosis may open future horizons for understanding IBD pathogenesis and provide novel biomarkers for IBD. 
This review also presents the current treatment and new perspectives for IBD treatment.

Keywords Inflammatory bowel diseases · Risk factors · Oral microbiota dysbiosis · Ectopic colonization · Intestinal 
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Abbreviations
APC  Antigen-presenting cell
CBP  Collagen-binding protein
Cc  Campylobacter concisus
CCK  Cholecystokinin
CD  Crohn’s disease
CDI  Clostridioides difficile infection
CPS  Capsular polysaccharide
Cr  Campylobacter rectus
Cu  Campylobacter ureolyticus
EEN  Exclusive enteral nutrition

EIMs  Extra-intestinal manifestations
EPS  Extracellular polymeric substances
FMT  Fecal microbiota transplant
Fn  Fusobacterium nucleatum
GI  Gastrointestinal
HCs  Healthy controls
IBD  Inflammatory bowel disease
IC  Indeterminate colitis
IECs  Intestinal epithelial cells
IL  Interleukin
Kp  Klebsiella pneumoniae
LPS  Lipopolysaccharides
MACs  Microbiota-accessible carbohydrates
MAMP  Microbe-associated molecular pattern
Pg  Porphyromonas gingivalis
PN  Parenteral nutrition
PRR  Pattern recognition receptor
SCD  Specific carbohydrate diet
SCFAs  Short-chain fatty acids

 * Fang-yu Wang
wangfyxhnk@163.com; wangfy65@nju.edu.cn

1 Department of Gastroenterology and Hepatology, Jinling 
Hospital, Medical School of Nanjing University, Zhongshan 
East Road 305, Nanjing 210002, China

2 Department of Stomatology, Jinling Hospital, Medical 
School of Nanjing University, Nanjing, China

http://orcid.org/0000-0001-6603-1457
http://crossmark.crossref.org/dialog/?doi=10.1007/s10620-021-06837-2&domain=pdf


43Digestive Diseases and Sciences (2022) 67:42–55 

1 3

S-ECC  Severe early childhood caries
Sm  Streptococcus mutans
TLR  Toll-like receptors
TNF-α  Tumor necrosis factor alpha
UC  Ulcerative colitis
WSD  Westernized diet
Zot  Zonula occludens toxin

Introduction

Inflammatory bowel diseases (IBDs), including Crohn’s 
disease (CD), ulcerative colitis (UC), and indeterminate 
colitis (IC), are inflammatory disorders of the gastrointesti-
nal (GI) tract with a chronic relapsing-remitting course [1]. 
The incidence and prevalence have been gradually rising in 
Africa, Asia, and South America since the 1990s [2], but 
vary widely from developed to developing countries, with 
the rates increasing over the last two to three generations 
in the developed countries while only for one generation in 
most of the developing countries [3]. The etiology of IBD 
remains unclear; it may be based upon a complex interac-
tion among genetic predisposition, environmental factors, 
dysbiosis of gut microbiota, and deficiency in the intestinal 
immune system (Fig. 1).

More than 200 susceptibility loci have been found to 
be associated with the pathophysiology of IBD [4]. These 
loci point to an interplay between the immune system and 
microbiota in IBD. For CD, disease-related genes have 

been discovered mostly in innate immunity, defective pro-
cessing of intracellular bacteria including NOD2/CARD15 
[5], unfolded protein response (UPR)-associated genes 
such as XBP1 [6], and autophagy-associated genes such 
as ATG16L1 [7], IRGM [8], and LRRK2 [9]. For UC, the 
focus has been laid largely upon the intestinal mucus bar-
rier function [10]. Deficiencies in ECM1 [11], CDH1 [12], 
HNF4a, and LAMB1 [13] all have adverse effects on the 
epithelial defense function. Interleukin (IL)-23R, IL12B, 
STAT3, JAK2, and TYK2, which are included in the adap-
tive immunity of interleukin-23 signaling and T-helper 17 
cells, together with IL-10 in interleukin-10 signaling, appear 
to be implicated in both CD and UC [14].

The rising incidence of IBD highlights the role of envi-
ronmental triggers. Recognized environmental factors, such 
as smoking [15], diet [16], breastfeeding [17], gastrointesti-
nal infections [18], stress [19], and drugs such as antibiotics 
[20], oral contraceptive agents (OCPs) [21], and nonsteroidal 
anti-inflammatory agents (NSAIDs) [22], all play impor-
tant roles in the development of IBD. Specifically, smok-
ing increases the risk of CD and reduces the risk of UC 
[23]. These environmental factors change the composition 
and metabolites of gut microbiota, mainly characterized by 
decreased diversity and disturbed immunoregulatory prop-
erties, resembling those confirmed in systemic inflamma-
tory conditions like rheumatoid arthritis, osteoarthritis, and 
spondylarthritis [24].

Specifically, among the various environmental factors, 
diet highly influences the gut microbial composition and 

Fig. 1  Risk factors of inflam-
matory bowel disease (IBD). 
IBD may arise from a complex 
interplay among environmental 
triggers, individual genetic 
susceptibility, dysbiosis of 
gut microbiota, and aberrant 
immune responses



44 Digestive Diseases and Sciences (2022) 67:42–55

1 3

immune system, playing the major role in the onset and 
progression of IBD (Fig. 2). The western diet (WSD) pat-
tern, characterized by high fat and sugar intake, has been 
suggested as a risk factor for IBD [25]. Components of the 
WSD tend to reduce gut microbiome diversity, promote 
pro-inflammatory microbiota, reduce the production of 
short-chain fatty acids (SCFAs), and disrupt the mucosal 
barrier. SCFAs, the major products of fiber fermentation, 
play important roles in intestinal homeostasis and host 
immune function. Bacteria involved in fiber degradation 
including Prevotella and Treponema, which are significantly 
decreased. Furthermore, WSD promotes the expansion and 
activity of bacteria associated with colonic mucus degrada-
tion, resulting in barrier dysfunction [26].

The  H2S toxin hypothesis put forward that the primary 
determinants of  H2S production associated with dietary sul-
fur and an abundance of sulfate-reducing bacteria (SRB) 
account for the pathogenesis of UC. An animal-based diet 
leads to higher dietary sulfur. Excessive  H2S induces oxida-
tive stress, energy starvation, and colonocyte death and dis-
rupts the gut barrier function [27]. Decreased consumption 
of dietary fiber also increases the risk of IBD. Metaboliz-
ing the fiber from fruits into SCFAs by intestinal micro-
biota inhibits NF-κB and the transcription of proinflamma-
tory mediators. Moreover, the aryl hydrocarbon receptor 
(AhR) mediates the effects of fiber and plays vital roles in 

protecting against environmental antigens [28]. Consump-
tion of highly processed and refined foods and of additives 
such as emulsifiers, preservatives, and artificial sweeteners 
can negatively affect gut microbiota. Dietary emulsifiers pro-
mote colitis by facilitating higher expression of mucolytic 
bacteria including Akkermansia muciniphila and Rumino-
coccus gnavus [29]. Furthermore, when studying CD-like 
ileitis model mice, artificial sweeteners increase the abun-
dance of Proteobacteria and the infiltration of bacteria into 
the ileal lamina propria [30]. Moreover, dietary phosphate 
can also promote intestinal inflammation through the activa-
tion of NF-κB in macrophages [31].

Both innate and adaptive immune systems are important 
for maintaining host health. Macrophages and dendritic 
cells (DCs) are essential for innate and adaptive immune 
responses. The adaptive immune system reveals distinct 
responses to different pathogens, and the selective activation 
of a particular subset of DCs may induce specific immune 
responses, including Th1, Th2, and Th17 responses, to extra-
cellular bacteria. CD is mainly driven by Th1 cells, whereas 
UC is a predominantly Th2-mediated disease [32, 33]. Th17 
cells are implicated in playing a pathogenic role in both CD 
and UC [34, 35]. The cross talk between antigen-presenting 
cells (APC) and Th cells is also impaired under inordinate 
conditions, which greatly influence the homeostasis of the 
immune system. To conclude, ectopic colonization of oral 

Fig. 2  Diet-mediated gut microbiota dysbiosis in the development 
of IBD. Components of the western diet (WSD) tend to reduce gut 
microbiota diversity, promote pro-inflammatory microbiota, reduce 
the production of short-chain fatty acids (SCFAs), increase  H2S pro-
duction promoting colonocyte death, increase mucus penetrability, 
and disrupt the intestinal mucosal barrier. Food additives also nega-

tively affect gut microbiota. Dietary emulsifiers promote colitis by 
facilitating higher expression of mucolytic bacteria including Akker-
mansia muciniphila and Ruminococcus gnavus. Artificial sweeteners 
increase the abundance of Proteobacteria and the infiltration of bacte-
ria into the ileal lamina propria
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bacteria can disrupt the ecological balance among the oral 
microbiota,  host, and  immune system. Disturbed activa-
tion of APC and differentiation of Th cells may both lead to 
intestinal inflammation.

Apart from genetic predisposition, environmental trig-
gers, and the relevant gut microbiota dysbiosis mentioned 
above, growing evidence indicates that the oral microbiota 
play a significant role in the pathogenesis of IBD. The 
oral microbiota contribute significantly to bowel health 
and disease. On the one hand, IBD patients show distinct 
oral microbiota dysbiosis. Diverse bacterial species have 
been associated specifically or non-specifically with IBD. 
On the other, overabundances of oral commensal bacteria 
with opportunistic pathogenicity have been found in the 
gut microbiota of IBD patients. The interaction between 
dislocated oral bacteria and immune responses in IBD has 
received increasing attention and provided insights into the 
ongoing explorations in this field. The link between oral-gut 
microbiota and intestinal inflammation has been established 
in mice with colitis, and attracting more attention in human 
studies now, a deeper understanding of oral bacteria-induced 
intestinal inflammation might help in treating IBD.

Oral Microbiota in Healthy Conditions

The human oral cavity is colonized by over 700 types of 
microorganisms including bacteria, archaea, fungi, and 
viruses, among which bacteria are the predominant constitu-
ent [36]. The Human Oral Microbiome Database (HOMD) 
(www.homd.org) aims to provide comprehensive informa-
tion on the approximately 700 prokaryote species existing 
in the human oral cavity, which are closely related to human 
health and disease based on a curated 16S rRNA gene-based 
provisional naming scheme [37].

Compared with other body habitats, the microbial com-
munity of the oral cavity is unique and site-specific. The 
mucosa, anaerobic pockets, supragingival plaque, subgin-
gival plaque, and saliva harbor unique microbiota [38]. 
Nasidze et al. studied the composition of the oral micro-
biota in the saliva samples of 120 healthy individuals from 
12 countries worldwide; their results confirmed individual 
specificities with few geographic specificities among these 
subjects [39]. Firmicutes, Proteobacteria, Bacteroidetes, and 
Actinobacteria showed the highest abundance, while Fuso-
bacteria, TM7, spirochaetes, OD2, and Synergistes were 
comparatively fewer in the oral microbiota of healthy adults. 
In addition, oral communities also showed interpersonal 
variation despite these similarities, embodied in the domi-
nant bacteria, with some mainly dominated by Streptococ-
cus, while others were dominated by Prevotella, Neisseria, 
Haemophilus, or Veillonella [40]. The abundance of micro-
biota differs remarkably among the dental plaque, saliva, and 

mucosa, with the highest in the dental plaque and lowest in 
the oral mucosa [41]. The oral microbiota undergoes physi-
ological changes with age and during the replacement of 
dentition. The dominant bacteria in the deciduous dentition 
period are Firmicutes and Proteobacteria, including a large 
amount of Streptococcus, Acinetobacter and Moraxella, but 
in the mixed dentition and permanent dentition period they 
are Firmicutes and Bacteroidetes. Veillonellaceae, spiro-
chetes, and TM7 increase in abundance with age [42].

In addition to bacteria, oral fungi, archaea, and viruses 
also greatly contribute to the diversity and ecological stabil-
ity of the human oral community. Archaea belong to non-
bacterial prokaryotes and have a more limited number of 
species than bacteria, the majority of which are methanogens 
[43]. Nguyen et al. reported Methanobrevibacter, Methano-
bacterium, Methanosarcina, Methanosphaera, and Thermo-
plasmatales in the oral cavity [44]. Fungi are relatively rare, 
constituting < 0.1% of the oral microbiota. Fungi are hard 
to isolate and culture with the existing methods, leading to 
very little progress in this field. Ghannoum et al. examined 
the profile of the oral fungal microbiota among 20 healthy 
individuals and reported that > 75 genera of fungi harbored 
in the healthy oral cavity, among which the most abundant 
was Candida, followed by Cladosporium, Aureobasidium, 
and Aspergillus [45]. Further analysis indicated that the most 
common Candida species was C. albicans [46].

The healthy human oral cavity contains eukaryotic 
viruses and bacteriophages [47], and the latter make up the 
majority of the oral virome. Herpesviridae, Papillomaviri-
dae, and Anelloviridae are the most common eukaryotic 
viruses, and most of these infections are asymptomatic in 
healthy individuals [48].

The oral microbiota make important contributions to 
maintaining both oral and systemic states. Interactions 
among the complex communities inhabiting the oral cav-
ity as well as their interactions with the host all contribute 
vitally to the status of the oral and general health. Distur-
bances of the oral microbiota are associated with not only 
oral diseases but also systemic infections and inflammation. 
Subsequent evidence has linked the oral microbiota with 
numerous systemic diseases [49].

Studies Show IBD‑Associated Oral Microbial 
Patterns

Approximately one third of IBD patients are characterized 
by the existence of extraintestinal manifestations (EIMs), 
including pathological changes in the mouth, eyes, skin, and 
joints [50]. CD lesions may occur in the entire digestive 
tract, from mouth to the anus. The oral manifestations of CD 
may be reflected in the changes in the oral mucosa and the 
tooth and tooth-supporting structures, such as papillomatosis 

http://www.homd.org
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of the oral mucosa, vesicular eruptions, pyostomatis veg-
etans, gingival hyperplasia, dental caries, and periodontitis, 
which are associated with oral microbiota dysbiosis [51]. 
Dental caries are common in preschool-aged children and 
can occur at any age, characterized by destruction of the 
tooth tissues [52]. In children with severe early childhood 
caries (S-ECC), Sm, Granulicatella elegans, Veillonella 
spp., Bifidobacteriaceae spp., Actinomyces, Leptotrichia, 
and Prevotella showed higher abundance in the plaque of 
children with S-ECC compared to caries-free children [53]. 
The relative abundance of Streptococcus, Actinomycetes, 
Veillonella, Lactobacillus, and Propionibacterium was 
also higher in the plaque of caries-active adults [54]. IBD 
patients showed higher prevalence of dental caries than HCs. 
Specifically, CD patients who had undergone restrictive sur-
gery had a higher DMF score and more Lactobacilli and Sm 
in the saliva compared to HCs [55].

Periodontal diseases, including gingivitis and periodon-
titis, are biofilm-induced bacterial infections of the tooth-
supporting structures including the gingiva, periodontal liga-
ment, and alveolar bone [56]. Gingivitis is the early stage, 
and periodontitis is a more advanced stage of periodontal 

diseases, which mainly result from dysbiosis of the oral 
microbiota; if left untreated, they can eventually lead to 
tooth loss and systemic inflammation [57]. In a study of 
the salivary and subgingival microbiota, Bacteriodetes, Act-
inobacteria, and Spirochaetes were more abundant in HCs 
than in periodontitis, while Porphyromonas, Tannerella, 
Prevotella, and Filifactors were more abundant in chronic 
periodontitis. IBD patients have an increased prevalence and 
moderate severity of periodontitis [58]. The colonization of 
periodontal pathogens, in particular Campylobacter rectus 
(Cr), might account for the periodontal manifestation of CD 
[59].

Besides abundance changes in dental caries- and perio-
dontitis-associated oral pathogens, IBD patients also showed 
significant changes in the composition, structure, and func-
tion of the oral microbiota (Table 1). Studies comparing 
patients of IBD with healthy matched controls showed dys-
biotic bacterial signatures within the oral microbiota related 
to intestinal inflammation.

Docktor et al. found a significant decrease in the overall 
microbial diversity of pediatric CD based on  swab samples 
taken from the tongue. Fusobacteria and Firmicutes were 

Table 1  Oral microbiota dysbiosis (composition changes and functional disturbances) in inflammatory bowel disease

CD Crohn’s disease, HCs healthy controls, IBD inflammatory bowel disease, UC ulcerative colitis

Disease Sampling loca-
tion

Subjects Oral microor-
ganisms with 
increased relative 
abundance

Oral microor-
ganisms with 
decreased relative 
abundance

Functional distur-
bances in IBD

Region References

Pediatric IBD Tongue and 
buccal mucosal 
brushings

CD (n = 40);
UC (n = 31);
HCs (n = 43)

Spirochaetes
Synergistetes
Bacteroidetes

Fusobacteria
Firmicutes

– Boston, MA [60]

Pediatric
CD

Subgingival 
plaque samples

Discovery cohort:
CD (n = 35); HCs 

(n = 43)
Validation cohort: 

CD (n = 43); 
HCs (n = 31)

TM7
Capnocytophaga
Rothia

– – Philadelphia, PA [61]

Adult IBD Saliva CD (n = 21);
UC (n = 14);
HCs (n = 24)

Bacteroidetes
Prevotella
Veillonella

Proteobacteria 
Streptococcus

Haemophilus

– Okinawa, Japan [62]

Adult IBD Saliva CD (n = 13);
UC (n = 54);
HCs (n = 25)

Streptococcaceae 
and Enterobac-
teriaceae in 
UC;

Veillonellaceae 
in CD

Lachnospiraceae 
and [Prevo-
tella] in UC;

Neisseriaceae 
in CD

Basic metabolic 
processes↓;

Genetic informa-
tion processes↓;

Oxidative stress 
and virulence↑

Beijing, China [63]

Adult IBD Saliva CD (n = 12);
UC (n = 10);
HC (n = 8)

Saccharibacteria 
(TM7)

Absconditabacte-
ria (SR1)

Prevotella
Bulleidia
Leptotrichia
Atopobium

Streptococcus
Rothia

Carbohydrate 
metabolism↑;

Protein process-
ing in the 
endoplasmic 
reticulum↑;

Genetic informa-
tion process-
ing↓

Nanjing, Jiangsu, 
China

[64]
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significantly reduced in CD, whereas Spirochaetes, Syner-
gistetes, and Bacteroidetes were increased in UC wcompared 
with HCs [60].

Kelsen et al. studied subgingival samples from pediatric 
CD patients and described a significant increase in the pro-
portions of TM7, Capnocytophaga and Rothia at week 0. 
Interestingly, differences between the subgingival microbiota 
of CD and HCs observed at baseline were not detected fol-
lowing effective treatment for CD at week 8 [61].

Said et al. found that the salivary microbiota in adult IBD 
was significantly different from that of HCs, characterized 
by increased Bacteroidetes, Prevotella, and Veillonella, with 
decreased Proteobacteria, Streptococcus, and Haemophilus 
in IBD patients. They also confirmed that dysbiosis of the 
salivary microbiota is related to inflammatory responses in 
IBD, reflected in a strong correlation between IL-1β levels 
and the relative abundance of Prevotella [62].

Zhe Xun et al. revealed enrichment of Streptococcaceae 
and Enterobacteriaceae in UC, and Veillonellaceae in CD, 
while depletion of Lachnospiraceae and [Prevotella] in UC 
and Neisseriaceae in CD. Other than changes in the com-
position, functional disturbances were also observed in IBD 
salivary microbiota, including a loss of genetic information 
processes and an increase in the biosynthesis and transport 
of substances relating to oxidative stress and virulence [63].

Our study published recently in Genomics investigated 
Chinese adult patients with UC or CD and assessed the 
dynamic changes in oral microbiota compared with HCs. 
Our results suggested that Saccharibacteria (TM7), Abscon-
ditabacteria (SR1), Leptotrichia, Prevotella, Bulleidia, and 
Atopobium, some of which are oral biofilm-forming bacte-
ria, were significantly increased in the salivary microbiota 
of IBD patients. Moreover, TM7 and SR1 showed a posi-
tive correlation to inflammatory cytokines associated with 
IBD, indicating alterations in oral microbiota are related to 
altered inflammatory immune responses in IBD. In addition, 
upregulation of carbohydrate metabolism and protein pro-
cessing in the endoplasmic reticulum, but downregulation of 
genetic information processing, have also been demonstrated 
when studying functional variations of oral microbiota in 
IBD [64].

Oral Bacteria Take Part in the Pathogenesis 
of IBD: Higher Abundance with Pathogenic 
Roles

Whether dysbiosis observed in IBD is a cause or an outcome 
of the disease remains controversial. However, fundamental 
studies carried out in specific pathogen- and germ-free mice 
have confirmed several pathogenic oral bacteria participat-
ing in disease progression.

Microbes of oral origin have been found in diseases at 
various non-oral sites, including digestive system conditions 
such as IBD [65], liver cirrhosis [66], and colon cancer [67]. 
The saliva contains many oral-resident bacteria. A specific 
group of oral bacteria may finally colonize the intestine by 
withstanding the effects of saliva, gastric acid, bile acid, 
and intestinal juice. This review outlines the pathogenetic 
mechanisms of oral microbiota in IBD, mainly oral bacte-
ria, including Pg, Sm, Fn, Cc, Cr, Campylobacter ureolyti-
cus (Cu), and Klebsiella on the initiation and progression 
of IBD. Table 2 summarizes the oral microbiota associated 
with IBD, which showed a high diversity in the sub-gingi-
val microbial samples [59], saliva [55, 68], fecal [69], or 
mucosa biopsy samples [70–73] of IBD patients. All these 
bacteria are original residents in the oral cavity, and a subset 
has pathogenic potentials. Once colonizing the extra-oral 
sites, these bacteria may become pathogens, especially in 
immune-compromised individuals, leading to disturbed gut 
microbiota and consistent intestinal inflammation.

Mechanistic Insights into the Pathogenic 
Oral Bacteria in the Development of IBD

Besides discovering the great oral microbiota dysbiosis in 
IBD, many published reports have provided plausible mech-
anisms by which oral bacteria cause the host responses to 
induce IBD. The mechanistic roles of five bacteria are dis-
cussed in turn and summarized in Fig. 3.

Microorganisms play important roles in both the main-
tenance of epithelial homeostasis and protection against 
potential pathogens. Ingested oral bacteria with saliva poorly 
colonize the healthy intestine as intestinal commensal bac-
teria may restrict the colonization of exogenous pathogens. 
The intestinal indigenous microbiota, predominantly pro-
biotics, secrete bacteriocin, antibiotics, and metabolon and 
compete for nutrition and space to antagonize exogenous 
pathogens [74]. The formation of the microbe-associated 
molecular pattern (MAMP) through the intestinal microbiota 
also contributes enormously to the restriction of exogenous 
pathogens. The host immune system recognizes bacteria-
specific antigens through the pattern recognition receptor 
(PRR) and activates downstream immune cascade responses 
[75]. In addition, stimulation of innate immunity, including 
the intestinal epithelial barrier, and regulation of adaptive 
immunity play an important role in pathogen restriction of 
the intestine. Once the restriction ability of commensal gut 
microbiota is weak, oral pathogenic bacteria can migrate 
and colonize the gut.

The intestinal epithelial barrier, which is mainly com-
posed of the mucus layer, intestinal epithelial cells (IECs), 
and tight junction, is both a physical and a biological bar-
rier protecting the intestinal lumen against a diversity of 
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microbiota under normal circumstances. The mucus cov-
ering the intestinal epithelium mainly consists of densely 
O-glycosylated MUC2 mucin secreted by goblet cells and 
serves as the first line of defense against pathogenic microor-
ganisms. The glycosylated MUC2 mucin can form two lay-
ers. The inner sterile layer attaches to the epithelium, and the 
outer layer with an expanded volume is colonized by bac-
teria. It is confirmed that the inner mucus layer is primarily 
lacking in bacteria [76]. Defects in the mucus will increase 
exposure of the epithelium to bacteria, trigger inflammatory 
responses, and exacerbate inflammation in IBD [77]. Dam-
age to the mucus layer is a critical cause of IBD, structural 
weakening of which is an early event in the pathogenesis of 
UC [78].

The best-described mechanisms of the oral microbiota 
in IBD occurrence are destruction of the intestinal epithe-
lial barrier, excessive secretion of inflammatory cytokines, 
disruption of the host immune system, and induction of 
immune escape.

Pg

Pg is a widely identified keystone pathogen for periodontal 
diseases, which can migrate from mouth to the intestine in 
mice, inducing gut microbiota dysbiosis with increased Bac-
teroidetes and decreased Firmicutes, weakening intestinal 
barrier function through downregulation of the gene expres-
sions of tjp-1 and occludin [79].

Gingipains secreted by Pg can help it escape the innate 
immune responses and selectively inactivate pro-inflamma-
tory factors released by activated DCs. Abdi et al. compared 
a mutant strain of Pg (W50) lacking in immune modification 
with the standard strain obtained from the American Type 
Culture Collection (W50-ATCC) and found that the former 
achieved significantly enhanced immune suppression, sug-
gesting that different genotypes of Pg have distinct patho-
genic mechanisms [80].

Abnormal immune responses can be induced by micro-
biota dysbiosis, along with effects of metabolites. Ectopic 

Table 2  Detection rate of pathogenic oral bacteria in inflammatory bowel disease

IBD inflammatory bowel disease, CD Crohn’s disease, UC ulcerative colitis, HCs healthy controls, PCR polymerase chain reaction

Oral micro-
biota

Disease Specimen Detection rate 
in IBD

Detection rate 
in HCs

P Region Detection 
method

References

Oral bacteria with higher relative abundance in the oral cavity of IBD patients compared to healthy controls
 Campylobac-

ter concisus
UC Saliva 100% (5/5) 75% (44/59)  < 0.05 Sydney PCR Zhang et al. [68]

CD 85% (11/13)  < 0.05
 Campylobac-

ter rectus
CD Sub-gingival 

microbial 
samples

94.6% 
(139/147)

– – Aachen, Ger-
many

Dot-blot 
hybridization

Stein et al. [59]

 Porphy-
romonas 
gingivalis

Adult CD Sub-gingival 
microbial 
samples

62.6% 
(92/147)

– – Aachen, Ger-
many

Dot-blot 
hybridization

Stein et al. [59]

 Streptococcus 
mutans

CD Saliva 1.5 (Arbitrary 
unit)

0.9 (Arbitrary 
unit)

0.016 Huddinge, 
Sweden

Dentocult-SM 
Orion Diag-
nostica

Sara et al. [55]

Oral bacteria with higher relative abundance in the intestine of IBD patients compared to healthy controls
 Campylobac-

ter concisus
Pediatric CD Intestinal 

biopsy speci-
mens

51.5% (17/33) 2% (1/52)  < 0.001 Sydney, Aus-
tralia

PCR Zhang et al. [73]

 Campylobac-
ter concisus

Pediatric CD Fecal 65% (35/54) 33% (11/33) 0.008 Sydney, Aus-
tralia

PCR Man et al. [69]

 Campylobac-
ter concisus

Adult UC Biopsy sam-
ples

33.3% (23/69) 10.8% (7/65) 0.0019 Aberdeen, 
United King-
dom

PCR Mukhopadhya 
et al. [70]

 Campylo-
bacter ureo-
lyticus

UC Biopsy sam-
ples

21.7% (15/69) 3.1% (2/65) 0.0013 Aberdeen, 
United King-
dom

PCR Mukhopadhya 
et al. [70]

 Fusobac-
terium 
nucleatum

Adult UC Biopsy sam-
ples

50.0% (11/22) 17.6% (6/34) 0.02 Guelph, 
Ontario, 
Canada

PCR Strausset al. [71]

 Klebsiella UC Biopsy sam-
ples

31.0% (9/29) – – Stuttgart, 
Germany

PCR Höring et al. 
[72]

CD 21.4% (3/14) – –
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colonization of the oral microbiota and its metabolites may 
also cause immoderate mucosal immune activation. The 
colonization of the oral microbiota in the intestine is fol-
lowed by the induction of different mucosal CD4 + T-cell 
subsets. Pulendran et al. claimed that Pg lipopolysaccharides 
(LPS) can induce Th- and T-cell responses characterized by 
significantly higher levels of IL-5, IL-10, and IL-13 but a 
lower level of IFN-γ, confirming that Pg LPS predisposes 
immune responses toward a semi-TH2-like rather than TH1-
type response [81].

Sm

Sm is the identified pathogen of dental caries. Sm strains 
are classified into serotypes c, e, f, and k, with serotype 
c accounting for > 70%, serotype e approximately 20% 

and serotypes f and k < 5%, respectively, in the oral cav-
ity of healthy individuals [82]. Some serotype k or f Sm 
strains expressing the collagen-binding protein (CBP) can 
cause hemorrhagic stroke because of their abilities to bind 
the collagen and resist phagocytosis [83]. Kojima et al. 
reported that specific strains isolated from UC patients 
had different serotypes from that of the standard strain, 
MT8148. Administration of a serotype k strain TW295 
from UC patients, rather than standard MT8148, can 
increase the disease activity index and aggravate colitis in 
mice. Localization of TW295 and upregulated expression 
of interferon-γ were also observed in hepatocytes. TW295 
was present less in the colon and small intestine than in 
the liver, indicating that the interaction of specific Sm with 
hepatocytes is crucial in the development of colitis [84].

Fig. 3  Pathogenic roles of specific oral bacteria in the pathogenesis 
of IBD. Healthy intestines restrict colonization of exogenous patho-
gens including ingested oral bacteria mainly in three ways. (1) The 
intestinal indigenous microbiota can secrete bacteriocin, antibiotics, 
and metabolites and compete for nutrition and space. (2) A microbe-
associated molecular pattern (MAMP) is formed. (3) Innate immunity 
and regulation of adaptive immunity are stimulated. In aberrant con-
ditions, ectopic colonization of oral bacteria can induce the develop-
ment of IBD via several mechanisms: (1) Destruction of the intestinal 
epithelial barrier: P. gingivalis can downregulate the expressions of 
tjp-1 and occludin, AToCC can break the processes related to tight 
junctions, and F. nucleatum can stimulate the function change of 
MUC2. (2) Secretion of inflammatory cytokines: F. nucleatum can 
induce the pro-inflammatory cytokine TNF-α. Hydrogen sulfide pro-

duced by F. nucleatum inhibits the effective use of anti-inflammatory 
butyrate in colon cells. (3) Disruption of the host immune system and 
induction of immune escape: P. gingivalis can secrete gingipains and 
selectively inactive pro-inflammatory factors released by activated 
DCs; C. concisus can stimulate neutrophil cells by upregulating the 
neutrophil adherence molecule CD11b and oxidative burst response, 
leading to the activation of the innate immune system; P. gingivalis 
LPS can induce a stronger Th2 response while K. pneumoniae a 
stronger Th1 response. (4) Specific Klebsiella spp. and Enterobacter 
spp. could migrate to the gut, activate the inflammasome in colonic 
mononuclear phagocytes, and trigger intestinal inflammation. (5) 
Oral pathobiont-reactive Th17 cells could translocate from the mouth 
to the inflamed gut, activated by translocated oral pathobionts, and 
induce colitis
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Fn

Fusobacterium is a group of gram-negative anaerobes prin-
cipally colonizing the oral cavity, but can also inhabit the 
intestine. Fn is known as a pathogen in both humans and 
animals [85]. The mechanistic role of Fn has been rela-
tively well explored. Fn infection can stimulate proinflam-
matory cytokine TNF-α both in vitro (in LS 174 T-cells) 
and in vivo (in rat colonic cells) [86]. Large amounts of 
hydrogen sulfide produced by Fn serve as a highly toxic end 
product of cysteine metabolism, inhibiting the effective use 
of butyrate in colon cells and resulting in chronic intestinal 
inflammation [87].

Some studies have confirmed that colonization and inva-
sion of Fn may promote the progression of intestinal inflam-
mation by affecting MUC2 mucin production. Compared 
with minimally invasive strains isolated from the healthy 
gut mucosa of control subjects, highly invasive Fn isolates 
from the lesions of CD patients displayed significantly 
enhanced expressions of MUC2 and tumor necrosis factor 
alpha (TNF-α).

It has been proven that Fn can promote the progression of 
colorectal carcinoma by recruiting myeloid-derived suppres-
sor cells capable of inhibiting the proliferation and inducing 
the apoptosis of T-cells [88]. It is therefore hypothesized 
that Fn can stimulate colonic neoplasia by downregulating 
adaptive immunity mediated by anti-tumor T-cells, resulting 
in resistance to anti-tumor immune response and facilitating 
the pathogenesis of colorectal carcinoma. Virulence factors 
derived from Fn have been shown to inhibit the activity of 
T-cells, and the outer membrane proteins Fap2 and RadD of 
Fn can induce cell death in human lymphocytes [89].

Cc

Cc can be classified into at least two different pathotypes 
based on their virulence mechanisms, adherent toxigenic 
Cc (AToCC) and adherent invasive Cc (AICC) [90]. AToCC 
strains possess a zonula occludens toxin (zot). The zot gene 
encodes a toxin that can increase intestinal permeability, 
with polymorphisms in different Cc strains. It can upregulate 
PAR2 expression and break the processes related to tight 
junctions and cytoskeletal remodeling and is detectable in 
30% of oral Cc strains. Cc ZOT808T polymorphism has 
been associated with active IBD [91]. Zot of Cc can stimu-
late intestinal epithelial cells and macrophages to release 
pro-inflammatory cytokines and enhance the responses of 
macrophages to other enteric bacteria [92].

The AICC strains of Cc can survive intracellularly 
within epithelial cells by autophagy. Sørensen demonstrated 
the ability of the oral reference strain Cc ATCC33237 to 
stimulate neutrophil cells by upregulating the neutrophil 
adherence molecule CD11b and oxidative burst response, 

resulting in the activation of the innate immune system 
[93]. In another study investigating the effects of different 
Cc strains on the expressions of Toll-like receptors (TLR) 
and their co-receptor, the myeloid differentiation factor in 
intestinal epithelial cells, Ismail found that Cc strains from 
both the oral cavity and intestine upregulated the expressions 
of TLR4 and MD-2 in HT-29 cells [94].

Kp and Klebsiella spp.

Studies have demonstrated the ability of Kp to invade 
colonic epithelial cells in mice. Several experiments have 
been carried out to clarify how Kp penetrates the intesti-
nal barrier. Hsu found that Kp could translocate across the 
intestinal epithelium through Rho GTPase- and phosphati-
dylinositol 3-kinase/Akt-dependent cell invasion, but failed 
to observe the distribution of the tight junction protein ZO-1 
or occludin [95].

The capsule has an extracellular polysaccharide structure. 
Kp characteristically produces a large amount of capsular 
polysaccharide (CPS) covering the bacterial surface. CPS as 
an acidic polysaccharide synthesized via the Wzy-dependent 
polymerization pathway [96], protects bacteria from toxic 
serum factors, and resists the opsonization and phagocytosis 
of macrophages, DCs, neutrophils, and epithelial cells [97]. 
A study published in Science shows that ectopic colonization 
of oral-derived bacteria can drive differentiation of T-cells 
into TH1 cells and induce intestinal inflammation in mice. 
In this study, Atarashi et al. reported that Klebsiella strains, 
especially Kp-2H7 isolated from the salivary microbiota of 
two CD patients, activated DCs and epithelial cells through 
the Toll-like receptor 4 (TLR4) signaling pathway, stimu-
lated secretion of IL-18, elicited recruitment and activation 
of TH1 cells, and consequently led to intestinal inflamma-
tion [98].

Enterobacter spp.

Besides the five specific bacteria mentioned above, a recent 
study published in Cell has demonstrated that periodontitis 
leads to the enrichment of Klebsiella (Klebsiella aerogenes, 
Klebsiella pneumoniae, Klebsiella variicola) and Enterobac-
ter spp. (Enterobacter cloacae, Enterobacter hormaechei) 
in the oral cavity and exacerbated gut inflammation in vivo. 
On the one hand, amassed oral pathobionts during periodon-
titis could migrate to and colonize the colitic gut, enhance 
IL-1β production, and activate the inflammasome in colonic 
mononuclear phagocytes. On the other, oral pathobiont-
reactive Th17 cells resulting from periodontitis in the oral 
cavity could also translocate from the oral mucosa-draining 
lymph nodes to the inflamed gut. Once arriving in the gut, 
oral-derived Th17 cells can be activated by translocated oral 
pathobionts and induce colitis. Hence, oral inflammation 
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such as periodontitis exacerbates gut inflammation by sup-
plying the gut with both colitogenic pathobionts and patho-
genic T-cells [99].

To conclude, oral bacteria-mediated destruction of the 
intestinal epithelial barrier may increase intestinal perme-
ability and mucosal degradation, leading to the impairment 
of intestinal resistance to pathogens and intestinal inflamma-
tion. Ectopic colonization of oral bacteria disrupts the eco-
logical balance among the oral microbiota, host, and immune 
system, leading to continuous intestinal inflammation.

Current Treatment and Microbiome‑Based 
Strategies for IBD

Treatment for IBD aims at inducing and maintaining long-
term deep remission and avoiding complications of active 
disease. The treatment strategies for IBD are challenging 
in view of its relapsing–remitting course, and most current 
treatment strategies aiming to suppress the immune system 
tamp down symptoms rather than eradicate causes, with con-
siderable incomplete efficacy and significant side effects. 
Consequently, more attention should be given to the modi-
fication of oral and gut microbiota when treating IBD, and 
prospective treatment must  carefully balanced both the oral 
and gut microbiota (Fig. 4).

A non-specific anti-inflammation strategy, including the 
combined application of amino salicylic acid drugs, glu-
cocorticoids, and immunosuppressants, is the traditional 
treatment of IBD. However, these strategies showed con-
siderable substantial adverse events, high recurrence rates, 
and poor efficacy after long-term use. Biological agents are 
increasingly used in moderate to severe IBD with ineffective 
traditional treatment [100]. Despite the efficacy of the anti-
TNF drugs, one-third of patients show no response to them. 

Patients responding or not responding to TNF-α inhibitor 
therapy showed significant differences in the gut microbial 
composition, characterizing by increased Bifidobacterium, 
Lachnospira, Lachnospiraceae, Collinsella, Eggerthella, 
and Roseburia taxa and reduced Phascolarctobacterium in 
CD patients with treatment success. Bifidobacterium can 
metabolize oligosaccharides and serve as a probiotic in IBD. 
Lachnospiraceae and Roseburia participate in the produc-
tion of SCFAs providing nutrition for intestinal epithelial 
cells and inducing regulatory T-cells [101]. To conclude, the 
composition of gut microbiota correlates with the response 
to anti-TNF drugs, and modifying the gut microbiota may 
promote the response to biological drugs. Other biological 
agents, such as interleukin inhibitors, integrin inhibitors, 
JAK inhibitors, and antisense oligonucleotides, play differ-
ent roles in the pathogenesis of IBD [100]. However, these 
agents mostly focus on immunosuppression rather than on 
modification of the gut microbiota. Hence, safer and more 
effective biological agents and investigation of their poten-
tial to modify gut microbiota need more attention; more 
studies are needed in this regard.

Fecal microbiota transplantation (FMT) refers to trans-
plantation of the infusion of feces covering gut microbiota 
from healthy donors to the gastrointestinal tract of a recipi-
ent patient to treat disease associated with gut microbiota 
dysbiosis. Several clinical trials of FMT have demonstrated 
efficacy in UC patients [102–104]. Previous randomized 
clinical trials showed different responses due to variation in 
fecal donors, routes (enema or nasoduodenal), and frequency 
of transplantation administration. Multi-center, double-
blind, randomized, placebo-controlled trials are needed to 
further investigate the effectiveness of FMT.

Dietary interventions for IBD can generally be divided 
into kinds of elimination diets, inclusion of prebiotics, 
inclusion of anti-inflammatory mediators, and exclusion of 

Fig. 4  Current treatment, 
microbiome-based strategies, 
and new perspectives for IBD. 
Microbial-based treatment 
strategies for IBD include fecal 
microbiota transplant (FMT), 
diet and nutritional therapy, and 
use of biological drugs. In view 
of the role of oral microbiota in 
the pathogenesis of IBD, modi-
fications of the oral microbiota 
may serve as a potential anti-
inflammatory therapy for IBD
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specific inflammatory mediators. Mediterranean diets are 
characterized by high levels of dietary fiber and are rich 
in microbiota-accessible carbohydrates (MACs); these gut 
microbiota can ferment to produce SCFAs. Among MACs, 
prebiotics can enhance the growth of probiotics such as Bifi-
dobacterium and Lactobacillus [105]. Intake of whole foods 
including fruits and vegetables can also reduce growth of 
harmful bacteria, such as Escherichia coli and Enterococ-
cus spp. [105].

Exclusive enteral nutrition (EEN) is a completely liquid 
formula covering all macronutrients and micronutrients 
patients need and is the only established dietary interven-
tion for CD with rigorous tests, especially for pediatric CD. 
EEN can induce clinical remission and mucosal healing in 
patients. In children with newly diagnosed CD receiving 
EEN for at least 6 weeks, 84% received early clinical remis-
sion at week 8, 76% had early biochemical remission, and 
42% achieved mucosal healing [106].

Exclusion diets have been found effective in both UC and 
CD and can serve as long-term therapy. Among the exclu-
sion diets, the specific carbohydrate diet (SCD) is the best 
studied. SCD is characterized by the elimination of grains, 
processed foods, sweeteners (except for honey), and all milk 
products (except for hard cheeses and fermented yogurt) 
for > 24 h. SCD can benefit both pediatric and adult IBD 
patients [107].

Parenteral nutrition (PN) eliminates the oral intake of 
food. PN relates to short-term avoidance of surgery but has 
little effect on the eventual need for surgery based on obser-
vational studies [108]. It has also been demonstrated that 
correction of vitamin D deficiency can reduce the require-
ment of future surgery for IBD patients compared to those 
who remained vitamin D deficient [28]. Successful dietary 
modifications in IBD are still in their infancy. Dietary and 
nutritional therapies present a unique opportunity for the 
treatment of IBD with challenges.

Modifications of the Oral Microbiota 
as Future Perspectives for IBD

Microbe-based therapies are becoming more diverse and 
effective, mostly based on the modification of gut micro-
biota. This review provides insights into the role of the oral 
microbiota in the pathogenesis of IBD. In light of this, IBD 
therapies could allow the restoration of a symbiotic micro-
biota in the oral cavity. Oral microbiota modification may 
serve as a novel anti-inflammatory therapy for IBD. Strate-
gies targeting specific oral species are expected to improve 
IBD management. Future advancements in the use of pro-
biotics to modulate the oral microbiota and antibiotics to 
eliminate specific oral pathogens are expected to prevent 
the recurrence of IBD.

Conclusion

Microbial studies of IBD have focused largely on the gut 
microbiota, and existing evidence points to the connec-
tion between dysbiosis of the oral microbiota and develop-
ment of IBD. Predominant oral microbiota dysbiosis has 
been observed in IBD patients. The oral cavity is an easily 
accessed body site for the assessment of the microbial com-
munity, with convenient sampling, non-invasiveness, and 
effective interventions. Hence, the oral microbiota holds 
great promise for diagnostic tools.

In this review, we have summarized specific oral bacte-
ria that may serve as new manipulators of inflammation in 
IBD. Thus, new therapeutic approaches targeting the oral 
microbiota by facilitating beneficial bacteria and eliminat-
ing pathogenic oral bacteria may be an innovative medical 
strategy to prevent the recurrence of IBD. This area of inves-
tigation is in its infancy and deserves more research.
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