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Chapter 11
Unlocking the Mysteries of the Human 
Microbiome to Combat COVID-19

Pushpanathan Muthuirulan, Meenakshi Bandyopadhyay, 
Sireesha Mamillapalli, and Pooja Sharma

1  Introduction

The recent global dissemination of the novel coronavirus SARS-CoV-2 and the sub-
sequent COVID-19 pandemic have galvanized the scientific community around the 
central goal of developing therapeutics for immediate and long-term treatment 
(Malinis et al. 2020; Shi et al. 2020; Pascarella et al. 2020; Shah et al. 2020). While 
global research efforts are being directed toward development of effective treatment 
strategies against COVID-19, the possible connection between the human microbi-
ome and COVID-19, which may influence the outcome of the clinical manifesta-
tion, should be considered and investigated. Human-microbe associations and their 
roles in influencing host physiology and immunity have been well known since the 
early nineteenth century (Hooper et  al. 2012; Belkaid and Hand 2014; Quigley 
2013; Young 2017). Microbial evolution and colonization within the human host 
has led to the establishment of an important biological interface between human 
health and diseases (O'Hara and Shanahan 2006; Fan and Pedersen 2021). Humans 
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host a highly diverse group of microbes, which consists mainly of ecological com-
munities of commensals, symbionts, and opportunistic pathogens that reside within 
different parts of the body, including the gastrointestinal tract (GI), to perform life- 
sustaining functions. Commensals and symbionts constitute a major portion of the 
diverse microbial group, while opportunistic pathogens are relatively few and less 
abundant. Commensals are beneficial to humans and they provide colonization 
resistance to pathogens (Thursby and Juge 2017; Dekaboruah et al. 2020).

A balance within the innate microbiota with reduced populations or complete 
elimination of pathogenic microbes is expected in a healthy individual (Belkaid and 
Hand 2014). The overall balance in the structure and composition of microbiota is 
important to ensure a healthy well-being and quality of life. Dysbiosis of the micro-
biota induced by certain risk factors such as infectious diseases, dietary changes, 
hypertension, cholesterol, diabetes, stress, aging, lack of physical activity, and use 
of antibiotics exerts a profound impact on human health (DeGruttola et al. 2016; 
Riccio and Rossano 2018; Frohlich et al. 2016). An overview of the relationships 
between microbial dysbiosis, risk factors, and COVID-19 disease is shown in 
Fig. 11.1. Several studies have demonstrated the remarkable association between 
human diseases and dysbiosis of the microbiota, and have shown that subtle altera-
tions in the human microbiota can cause severe health complications such as diabe-
tes, eczema, allergies, acne, diarrhea, autism, cancer, gastric ulcer, cardiovascular 
diseases, obesity, rheumatoid arthritis, muscular dystrophy, multiple sclerosis, and 
other disorders, suggesting that the microbiome may serve as a key regulator of 
human health and disease development (Kesh et al. 2020; Lee et al. 2018, 2019; 
Pascal et al. 2018; Saffouri et al. 2019; Pulikkan et al. 2018; Sheflin et al. 2014; 
Bruno et al. 2018; Lau et al. 2017; Amabebe et al. 2020; Correa et al. 2019; Picca 
et al. 2018; Kirby and Ochoa-Reparaz 2018). With an aim to circumvent an aggres-
sive immunological response to pathogenic infections like COVID-19, a microbi-
ome may be pivotal in maintaining a host physiology and immunity to prevent an 
array of excessive physiological reactions that eventually become detrimental to 
vital organs (e.g., lungs, heart among others) in the human body.

Certain additional factors, such as excessive use of antibiotics and dietary 
changes, have been proven to cause disruption of the human microbiome which 
serves as a major risk factor for the development of several diseases (Francino 2015; 
Vangay et al. 2015; Dudek-Wicher et al. 2018). An excessive use of antibiotics con-
siderably disrupts the ecology of the human microbiome. Unlike the innate micro-
biome, dysbiotic microbiota possesses a relatively less potential to afford protection 
against pathogens that may result in serious health issues associated with metabolic, 
immunological, and developmental disorders. The excessive use of antibiotics may 
also accelerate the evolution of drug resistance (Francino 2015; Vangay et al. 2015; 
Dudek-Wicher et al. 2018; Neuman et al. 2018; Magana et al. 2020). Despite the 
fact that antibiotics do not treat or prevent viral infections like COVID-19, antibiotic 
usage during COVID-19 has dramatically increased, which may exacerbate the cur-
rent global status of antimicrobial resistance. Diet is one of the key factors influenc-
ing the composition and diversity of the human microbiota (Brown et al. 2012; Hills 
Jr. et  al. 2019; Chan et  al. 2013). Further studies are necessary to examine the 
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mechanisms by which dietary changes and lifestyle modifications during COVID-19 
influence the composition of the human microbiome, which may indicate the poten-
tial of therapeutic dietary strategies used for modulation of the microbial composi-
tion, diversity, and stability in terms of preventing COVID-19. Pregnancy-induced 
microbial dysbiosis is often associated with cesarean delivery and is caused by com-
plications, such as preterm birth, extremes of maternal body mass index (BMI), 
infection, extremes of infant size, and gestational diabetes (Neu and Rushing 2011). 
The inflammatory and immune changes mediated by pregnancy alter the maternal 
microbiome and contribute to long-term negative consequence for both the mother 
and child. Much remains to be discovered on this aspect; however, most studies are 
focused only on the healthy desired microbial changes during pregnancy. Future 
research is warranted to elucidate precise roles and mechanisms of the microbiota 
associated with pregnancy-related complications (Nuriel-Ohayon et  al. 2016; 
Edwards et al. 2017).

A better understanding of the host-microbiome interaction is also important for 
the development of diagnostic approaches and for the treatment of diseases caused 

Fig. 11.1 An overview of the relationships between microbial dysbiosis, risk factors, and 
COVID-19. Risk factors such as hypertension, cholesterol, obesity, diabetes, excessive use of anti-
biotics, stress, infections, aging, pregnancy, and lack of physical activity could induce microbial 
dysbiosis in humans which might contribute to the progression of COVID-19 disease
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by dysbiosis of the microbiota (Varghese et al. 2020; Casadevall and Pirofski 2000; 
Lebeer and Spacova 2019). Recent advances in high-throughput sequencing tech-
nologies offer deeper understanding of host-microbe interactions that can reveal the 
core characteristics of the microbiome interactions, including microbial identifica-
tion, classification, profile prediction, and mechanisms of host-pathogen interac-
tion, which will provide new avenues to gain deeper insights into the consequences 
of microbial imbalance with the potential to identify novel therapeutic drug targets 
or microbiome-mediated interventions for the treatment of COVID-19 (Baddal 
2019; Hovhannisyan and Gabaldon 2019; Malla et al. 2018; Greenwood et al. 2016).

Here, we present an account of the existing knowledge linking the human micro-
biome to COVID-19 severity. The aim is to provide a foundation for exploration of 
the different aspects of the microbiome for the development of personalized inter-
ventions to treat or prevent COVID-19.

2  COVID-19-Associated Dysbiosis of the Host Microbiome

2.1  Gut Dysbiosis and COVID-19

The human gut harbors a large repertoire of microorganisms and exerts a marked 
influence on host homeostasis and disease pathophysiology. Most microbial mem-
bers of the gut predominantly belong to the phyla Bacteroidetes, Firmicutes, 
Actinobacteria, Proteobacteria, and Verrucomicrobia (Konstantinidis et  al. 2020; 
Ferreira et al. 2020; Kim et al. 2017). Gut dysbiosis induced by several risk factors 
has worsened human health, leading to the development of common respiratory 
diseases including asthma, chronic obstructive pulmonary disease (COPD), cystic 
fibrosis (CF), lung cancer, and other respiratory infections (Chunxi et  al. 2020). 
COVID-19 patients also exhibit extrapulmonary distress, such as gastrointestinal 
tract infections and bleeding, vomiting, nausea, loss of appetite, abdominal pain/
discomfort, diarrhea, and ulcerative colitis (Olaimat et al. 2020; From the American 
Association of Neurological Surgeons et al. 2018). Notably, the patients presenting 
with respiratory disorders are at increased risk, wherein a reduction in the popula-
tion of Lactobacillus and Bifidobacterium has been observed, along with an increase 
in the number of opportunistic pathogens, thereby highlighting the negative effects 
exerted by microbial dysbiosis on pulmonary functions (Din et al. 2020; Ferreira 
et al. 2020).

Impaired gastrointestinal function and detection of the SARS-CoV-2 in stools of 
the affected individuals may hint at a fecal–oral route of transmission. Reports from 
the US and China highlight the SARS-CoV-2 multiplication ability in both respira-
tory and digestive tracts. Additionally, fecal samples obtained from infected patients 
showed the presence of the SARS-CoV-2 RNA even when respiratory samples 
showed the absence of the viral RNA. Thus, COVID-19 infection negatively affects 
the gastrointestinal (GI) tract and gut microbiota diversity. Studies also indicate that 
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the growth of opportunistic pathogens and reduction in the population of beneficial 
bacteria in the gut are positively correlated with the severity of COVID-19 infec-
tions (Olaimat et al. 2020). Based on meta-analysis reports of patients from Wuhan, 
20% of the COVID-19 patients showed GI symptoms, including diarrhea. The 
SARS-CoV-2 virus has been detected in anal swabs and stool samples of almost 
50% of the affected patients. The virus utilizes the angiotensin-converting enzyme 
2 (ACE2) receptors for cellular entry and these receptors are reportedly expressed 
in respiratory and GI tracts, enterocytes, renal tubules, gallbladder, cardiomyocytes, 
male reproductive cells, placental trophoblasts, ductal cells, eye, and vasculature 
(Hikmet et al. 2020; Zuo et al. 2020).

The presence of Collinsella aerofaciens, C. tanakaei, Streptococcus infantis, and 
Morganella morganii has been reported in fecal samples of patients with a high 
burden of SARS-CoV-2 infection. On the contrary, fecal samples enriched with 
Parabacteroides merdae, Bacteroides stercoris, Alistipes onderdonkii, and 
Lachnospiraceae members demonstrated negligible or absence of the SARS-CoV-2 
viral load. Notably, the elderly population is the most vulnerable group to 
COVID-19-associated mortality, and this may be attributed to the gut microbiota 
dysbiosis and impaired immune system usually observed in the elderly. Such a dys-
biosis is also responsible for depression, increase in inflammatory markers, and 
development of cognitive deficits in the elderly individuals. Additionally, decrease 
in the Firmicutes to Bacteroidetes ratio and alterations in the abundance of 
Bacteroides, Clostridium, and Lactobacillus have been reported in the elderly. Thus, 
it can be implied that reduction in the gut microbial diversity may exacerbate the 
already impaired immune system which is observed in the elderly people, and this 
may increase mortality rates of such individuals (Villapol 2020). It can also be 
inferred that advancing age is a major factor responsible for gut microbiota dysbio-
sis, and measures should be undertaken to replenish the gut microbiota using 
microbiome- directed strategies.

COVID-19 has also threatened the mental health of the public, causing problems 
such as stress, panic, depression, anxiety, sleep disorders, lower mental well-being, 
and even suicide (Roy et al. 2020; Rajkumar 2020; Shinu et al. 2020). Mask wearing 
is another key precautionary measure that can protect us from contracting COVID-19 
disease, but it can also provoke significant psychological responses that might cause 
life-long health consequences. One important aspect to be considered while dis-
cussing COVID-19-associated dysbiosis is the impact of psychological stress dur-
ing the pandemic. It has been proven that the human gut microbiome plays an 
important role in human health and well-being, including mental health. Especially, 
the gut microbiota can cooperate with the hosts to regulate the development and 
function of the immune system, metabolic and nervous systems through dynamic 
bidirectional communication along the gut–brain axis. Disruption of microbial 
communities influencing central nervous system components (gut–brain axis) has 
been implicated in several neurological disorders (Morais et al. 2020). In addition, 
the COVID-19 pandemic has also caused decline in the physical health of individu-
als due to lack of exercise, ingestion of improper food, the effect of quarantine in the 
deterioration the mental health, which all can severely affect the human gut 
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microbial composition. Exercise is one of the best ways to optimize human physical 
and mental health, and lack of exercise during COVID-19 pandemic can put indi-
viduals at higher risk of infection. Prolonged exercise has beneficial effects and has 
been reported to increase intestinal permeability, compromising gut-barrier func-
tion and resulting in bacterial translocation from the colon (Peters et  al. 2001; 
Gisolfi 2000). Probiotics have been reported to restore proper life balance and act as 
“psychobiotics,” thereby serving as an alternate therapeutic option for COVID-19 
(Rishi et  al. 2020). The utilization of psychobiotics to manage serious problems 
related to psychological responses during this pandemic is almost unavoidable. 
Many microorganisms have been proposed as potential psychotropic agents to 
relieve anxiety and stress including S. thermophiles, B. animalis, B. bifidum, 
B. longum, Lactobacillus bulgaricus, L. lactis, L. acidophilus, L. plantarum, 
L. reuteri, L. paracasei, L. helveticus, L. rhamnosus, Bacillus coagulans, Clostridium 
butyricum, and others (de Araujo and Farias 2020). Recent evidence also hints at the 
mechanism by which high levels of stress increase gut permeability via increase in 
the corticotropin- releasing hormone levels, thereby altering gut microbial composi-
tion and leading to dysbiosis and possible susceptibility to SARS-CoV-2 infections 
(Anderson and Reiter 2020). Thus, focusing on the interaction of COVID-19 with 
gut–brain axis would allow us to evaluate the basic mechanisms involved in clinical 
manifestation of COVID-19 and would help endorse in the advancement of prophy-
lactic and treatment strategies.

Social distancing is another key component of the expert-recommended guide-
lines to prevent the spread of SARS-CoV-2 infections. According to the World 
Health Organization, the transmission of SARS-CoV-2 virus primarily occurs 
through saliva or airborne respiratory droplets. Protective precautions to reduce the 
chances of being infected or spreading COVID-19 include wearing masks, hand 
sanitation, and social distancing from other people. Recent study has demonstrated 
the potential connection between social isolation and reduced bacterial diversity. 
Severe disruption of bacterial diversity caused by social distancing and other stress- 
related tension can lead to gut microbiota dysbiosis, which is associated with 
reduced numbers of protective bacteria. Such reduced numbers of protective bacte-
ria can lead to higher risk of opportunistic infections and it has also been shown to 
increase the risk of influenza infections in the lung. Recent study has also suggested 
that a human microbiota can influence response to COVID-19, and that COVID-19 
patients do possess increased risk of dysbiosis than healthy individual (Domingues 
et al. 2020). Further, the strict isolation and lockdown protocols implemented by 
different countries also play an important role in dysbiosis. While lockdown proto-
cols were necessary for containment of the virus, this approach was observed to be 
a double-edged sword; as complete lack of human contact potentially reduces the 
dissemination of pathogens and helps to curb the pandemic, it also affects the micro-
bial profile of an individual and reduces the microbial diversity, thereby increasing 
susceptibility to the SARS-CoV-2 owing to microbial dysbiosis (Domingues 
et al. 2020).

The involvement of gastrointestinal milieu in COVID-19 makes the gut micro-
biota a potential target in COVID-19 management and transmission (Chan et  al. 
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2004). Moreover, COVID-19 infection is more severe among individuals with high 
blood pressure, diabetes, and obesity, conditions that are known to be associated 
with changes in the composition of the gut microbiota (Sattar et al. 2020; Rodgers 
and Gibbons 2020; Lim et  al. 2021). Understanding the possible connections 
between the gut microbiota and COVID-19 severity would help to develop a novel 
and targeted approach to modulate harmful gut microbiota, that may represent a 
new therapeutic strategy against COVID-19 and its morbidities. Further, under-
standing of the host-microbial perturbations that underlie SARS-CoV-2 infections 
would also enable us to utilize the gut microbiota as an indicator for diagnosis of 
COVID-19 severity. Additionally, improving the composition of the gut microbiota 
and the proportion of metabolites produced therein through probiotics and personal-
ized nutrition may enhance immunity and minimize the impact of COVID-19 sever-
ity in the elderly and immunocompromised patients (Olaimat et al. 2020).

In a study examining the role played by the gut microbiota in COVID-19 sever-
ity, a blood proteomic risk score (PRS) was used. Normal, non-infected susceptible 
individuals and patients with COVID-19 were screened using proteome data and via 
analysis of inflammatory biomarkers present in blood, to verify the PRS association 
with the risk of developing COVID-19 in healthy individuals. Studies on the core 
gut microbiota characteristics, such as gut microbiota metabolites produced and 
biosynthesis pathways involved, and fecal metabolomics were conducted. 
Demographics, lifestyle, and socioeconomic background of the patients and healthy 
individuals were also considered. The study demonstrated the involvement of the 
biosynthesis pathways for aminoacyl-tRNA, arginine, valine, leucine, and isoleu-
cine, and highlighted the fact that alterations in the pathways could be used to dif-
ferentiate between healthy and infected individuals, thereby indicating the utility of 
proteome data and inflammatory parameters to assess the severity of COVID-19 
(Gou et al. 2020). Thus, tapping into the potential of the gut microbiome would help 
to identify potentially safe and affordable approaches for the prevention and treat-
ment of COVID-19 and other viral respiratory diseases (Sadiq 2021; Donati Zeppa 
et  al. 2020). However, more clinical and evidence-based trials are warranted to 
determine the appropriate strategy to fight against SARS-CoV-2 infections.

2.2  Lung Dysbiosis and Susceptibility to Viral Infections

Lung microbiota is defined as the pulmonary microbial community that harbors a 
diverse group of microbes and is considered to be in close contact with the exoge-
neous microbes on a daily basis. This feature indicates that the lungs are one of the 
vital systems whose structure and functionality should be maintained for health and 
survival. The upper respiratory tract (URT) and lower respiratory tract (LRT) report-
edly shelter similar microbial populations, although denser communities have been 
observed in the former versus the latter. The URT interconnected system predomi-
nantly consists of Actinobacteria (Corynebacterium and Propionibacterium spe-
cies), Firmicutes (Staphylococcus species), Proteobacteria, and Bacteroidetes, 
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including Streptococcus, Neisseria, Haemophilus, and Lachnospira species. A com-
mensal population including Streptococcus pneumoniae, Neisseria meningitides, 
and Haemophilus influenzae is native to the URT (Frank et al. 2010; Lemon et al. 
2010; Bassis et al. 2014; Charlson et al. 2011; Yi et al. 2014; Ling et al. 2013; Allen 
et al. 2014). Microbial populations are relatively less diverse in the LRT (Dickson 
et al. 2017; Abreu et al. 2012; Bassis et al. 2015; Venkataraman et al. 2015), although 
phyla including Bacteroidetes and Firmicutes, which mainly include Prevotella, 
Veillonella, and Streptococcus species are found in lungs (Morris et al. 2013; Segal 
et al. 2013; Dickson et al. 2015). Relative abundance of certain species in LRT are 
often attributed to chronic airway diseases such as COPD and cystic fibrosis (Morris 
et al. 2013). Inadequate respiratory tract clearance due to increased mucus produc-
tion and reduced ciliary beat frequency also leads to altered viral and bacterial 
clearance.

Influenza A virus (IAV) is known to cause flu infections posing a serious public 
health challenge, resulting in reduced annual workforce and an economic burden. 
Frequent antigenic substitution often referred to as an antigenic drift contributes to 
challenges in vaccine design. Alterations in healthy respiratory microbial popula-
tions are found to be associated with IAV infection. Streptococcus colonization, as 
evidenced in a mouse model, resulted in decreased susceptibility to IAV infection. 
Elevated H1 immunoglobulin (IgA) titers in an inoculation study of young adults by 
attenuated influenza vaccine were positively associated with Streptococcus infantis 
(Short et al. 2012; Diavatopoulos et al. 2010; McCullers and Rehg 2002). In con-
trast, Prevotella species abundance is associated with increased susceptibility to 
Influenza B viral infection, tuberculosis, and COPD. Children are more susceptible 
to IAV than young adults and varied reasons, including frequent exposure and lack 
robust immune development at young age, are attributed to the observed effect 
(Langevin et al. 2017; Hui et al. 2013; Cheung et al. 2013). Earlier study has dem-
onstrated that pretreatment of mice with antibiotics disrupts the innate and adaptive 
immune systems (Ichinohe et al. 2011). It has also been reported that an altered 
microbiome results in the loss of lipopolysaccharides and pattern recognition recep-
tors for activation of toll-like receptors and it thus reduces immune action by type I 
and II interferons (Ichinohe et al. 2011; Abt et al. 2012). Immunity is at the forefront 
in discerning the severity of the disease. Though several studies indicate a relation-
ship between microbial populations and viral infections, comprehensive interven-
tions involving animal and human subjects remain to be conducted to address the 
true effect of the respiratory microbiome and its susceptibility to viral infections and 
to exclude an altered immune response (Khatiwada and Subedi 2020).

Lung microbiome has received greater attention in recent times due to its asso-
ciation with immunity and respiratory diseases, including COVID-19. Lung micro-
biome plays an important role in activating an innate and adaptive immune response, 
which can potentially reduce the risk and consequences of COVID-19 (Khatiwada 
and Subedi 2020). Only a few studies have examined the relationship between 
COVID-19 and the lung microbiome. Shen et al. investigated the bronchoalveolar 
lavage fluid and found significant difference in microbial composition between 
COVID-19 patients and healthy control. COVID-19 patients showed enrichment of 
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pathogenic bacteria indicating, the degree of microbial imbalance in diseased states 
(Shen et al. 2020). In another study, Fan et al. have investigated the lung microbi-
ome from the lung post-mortem biopsies from deceased COVID-19 patients. This 
study has reported the presence of most common bacterial (Acinetobacter, 
Chryseobacterium, Burkholderia, Brevundimonas, Sphingobium, and 
Enterobacteriaceae) and fungal genera (Cutaneotrichosporon, Issatchenkia, 
Wallemia, Cladosporium, Alternaria, Dipodascus, Mortierella, Aspergillus, 
Naganishia, Diutina, and Candida), indicating that bacterial and fungal infections 
are prevalent in COVID-19 patients (Fan et al. 2020). Overall, there is less substan-
tial information available to explains the relationship between lung microbiome and 
COVID-19. Further studies are required to understand the role of lung microbiome 
in COVID-19 severity.

The gut and the lungs are the dominant locations for hosting the microbiota; 
however, the gut microbiota diversity and microbial population are remarkably 
higher than those observed in the lungs. Evidence indicates the presence of the gut–
lung axis and a bidirectional crosstalk between the gut and the lungs. It has been 
hypothesized that inflammation of the gut also leads to lung inflammation through 
this axis. According to previous reports, it has been observed that the gut microbi-
ome dysbiosis is linked with several respiratory disorders; further, in several respi-
ratory diseases, the lung microbiota composition shifts toward the gut microbiota. 
Several factors have been proposed for this phenomenon. One of the factors hints at 
migration of the gut microbiota toward the lungs owing to increased permeability of 
the GI tract (Olaimat et al. 2020). To date, there is no direct evidence that describes 
the role of the lung microbiome in influencing COVID-19; however, related human 
and animal studies have shown that the human microbiome can play critical role in 
immune response development against viral infections. Future studies are necessary 
to investigate the relationship between the lung microbiome and COVID-19.

2.3  Pregnancy, Human Microbiota, and COVID-19

The inflammatory and immune changes mediated by pregnancy alter maternal gut 
function and microbial composition. The maternal gut microbiome composition 
significantly contributes to obstetric outcomes with long-term health consequences 
for both the mother and the child. The hormones such as estrogen and progesterone 
contribute to a shift in the human microbiota and impact gut function, especially 
during the prenatal period (Edwards et al. 2017). Several studies have shown that 
the microbiome can be vertically transmitted from parents to offspring, and it is 
plausible that the maternal–infant microbiome transfer may influence the early 
stages of infant health (Yang et  al. 2016; Dunn et  al. 2017). The overall risk of 
developing complications associated with COVID-19  in pregnant women is low 
(Maleki Dana et  al. 2020). However, recent data highlight the increased risk for 
severe COVID-19 during pregnancy. According to the Centers for Disease Control 
and Prevention (CDC), pregnant women are 5.4 times more likely to be 
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hospitalized, 1.5 times more likely to be subjected to intensive care, and 1.7 times 
more likely to require mechanical ventilation than non-pregnant women (Zambrano 
et  al. 2020). Certain studies suggest that premature birth is more likely to be 
observed in pregnant women with COVID-19 and their babies are more likely to be 
admitted to a neonatal unit (Maleki Dana et al. 2020; Yang et al. 2020). One study 
has suggested that newborns rarely acquire COVID-19 from SARS-CoV-2 positive 
or suspected SARS-CoV-2-infected mothers. Over 800 newborns reported, the inci-
dence of vertical transmission has proven to be low, indicating that adverse clinical 
outcomes in newborn seem to be due to maternal disease status in the small subset 
of newborns with critically ill mothers, rather than illness due to SARS-CoV-2 
infection (Kyle et al. 2020). One another study has confirmed that COVID-19 infec-
tion in pregnant women resembles the SARS-CoV-2 infection in non-pregnant adult 
population, with possibly less chance for adverse maternal or perinatal outcome 
(Elshafeey et al. 2020). All these studies suggest that there is no vertical transmis-
sion of COVID-19 from the mother to the fetus; however, certain studies indicate 
such a pattern of transmission, but additional convincing evidence regarding the 
same remains to be reported (Dashraath et al. 2020; Chen et al. 2020). Further stud-
ies are necessary to understand the COVID-19-mediated microbiome alteration and 
maternal microbial transmission during pregnancy which may help explain the 
mechanisms of microbiome alterations associated with COVID-19 that impact fetal 
growth and development.

3  Antimicrobial Resistance in the Era of COVID-19

3.1  Host Gut Microbiome Dysbiosis Exacerbated by Use 
of Antibiotics

Excessive and long-term use of antibiotics can trigger microbiome dysbiosis. 
Studies on vancomycin have reported long-lasting shifts in the gut microbiome, 
with expansion of less abundant bacterial populations (Kim et  al. 2017). It has 
been reported that excessive antibiotic usage can lead to altered GI tract anatomy 
and physiology; this may play a role in the migration of gut microbes toward the 
lungs and lead to altered microbial diversity (Olaimat et  al. 2020). Considerable 
evidence has demonstrated an association between antibiotic usage during the first 
year of life and development of asthma by the 6th–7th year of life (Becattini et al. 
2016). A recent study has shown that antibiotic-naive patients with COVID-19 
demonstrated presence of bacteremia-causing opportunistic pathogens, such as 
Clostridium hathewayi, Actinomyces viscosus, and Bacteroides nordii compared 
to healthy individuals. Antibiotic-treated COVID-19 patients showed depletion of 
beneficial microbes including Faecalibacterium prausnitzii, Lachnospiraceae bac-
terium 5_1_63FAA, Eubacterium rectale, Ruminococcus obeum, and Dorea formi-
cigenerans compared with antibiotic-naive patients with COVID-19. Bacteroides 
species, including Bacteroides dorei, Bacteroides thetaiotaomicron, Bacteroides 
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massiliensis, and Bacteroides ovatus, showed inverse correlation with the fecal 
SARS-CoV-2 load; notably, these species were associated with decreased ACE2 
expression in the murine colon, indicating that Bacteroides species might play a 
protective role in combating SARS-CoV-2 through ACE2 expression. The highest 
SARS-CoV-2 mortality and morbidity rates have been reported in older patients and 
in those with underlying comorbidities. Notably, a less abundant population of the 
Bacteroides species was observed in such patients, indicating that an individual’s 
gut microbiome might affect the immunological response to SARS-CoV-2 infection 
(Zuo et al. 2020).

3.2  Antibiotic Prescription, Over-sanitation, and Antimicrobial 
Resistance During the COVID-19 Pandemic

With regard to symptomatic cases, individuals infected with the SARS-CoV-2 usu-
ally present with fever, respiratory distress, and pneumonia; in extreme cases, they 
present with multiple gastrointestinal, renal, neurological, and cardiac issues, 
wherein hospitalization is deemed necessary (Ferreira et al. 2020). Generally, indi-
viduals exhibiting upper or lower respiratory tract diseases are prescribed with anti-
biotics. However, as per findings of a recent study, 72% of the patients received 
antibiotics, among which only 8% were diagnosed with bacterial or fungal co- 
infections. As per WHO reports, treatments using azithromycin and hydroxychloro-
quine have been rampantly prescribed irrespective of any conclusive evidence from 
COVID-19 clinical trials. Considering the indiscriminate and injudicious use of 
antibiotics during COVID-19, which may lead to subsequent development of anti-
microbial resistance, the WHO has outlined specific antibiotic usage guidelines 
along with antibiotic stewardship principles. In the absence of any underlying bac-
terial infection, the guidelines explicitly deter individuals from opting for an antibi-
otic therapy or antibiotic-mediated prophylaxis for moderate COVID-19 symptoms. 
The guidelines also recommend consideration of epidemiology, host factors, and 
routine clinical assessments prior to antibiotic prescription. Only older patients 
residing in long-term care facilities and children below 5 years of age exhibiting 
moderate COVID-19 symptoms can be treated with antibiotics prescribed for bacte-
rial pneumonia (Getahun et al. 2020).

Increased mortality rates of patients with COVID-19 seem to be associated with 
excessive antibiotic usage and gut microbial dysbiosis (Din et al. 2020). A majority 
of the respiratory tract infection (RTI) cases are erroneously treated with antibiotics, 
regardless of the presence of a bacterial etiology. Considering this, the Choosing 
Wisely campaigns have been initiated to disseminate appropriate information on 
antibiotic usage. The campaigns propagate avoidance of antibiotic usage in cases of 
viral origin (influenza-like illness), upper respiratory infections, and self-limiting 
sinusitis. A recent study has further proposed that COVID-19/influenza-like symp-
toms and common cold cases should not be treated with antibiotics or symptomatic 
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management is sufficient; further examination, in-person visits, bacterial culture 
tests, vital sign abnormalities, and increase/decrease in symptoms should be consid-
ered before prescribing antibiotics for acute otitis media, pharyngitis, sinusitis, 
COPD, and suspected pneumonia cases (Leis et al. 2020).

A recent study conducted on the antibiotic usage in the initial period of the 
COVID-19 pandemic reported a biphasic pattern. Antibiotic prescription and con-
sumption increased through March and April 2020. In March 2020, during the first 
peak, amoxicillin/clavulanate was recommended for patients with COVID-19 and 
administration or prescription of antibiotics increased gradually. In April 2020, dur-
ing the second peak, broad-spectrum antibiotics (cefepime, piperacillin/tazobactam, 
meropenem, imipenem, and ertapenem) were prescribed with reduced prescription 
of amoxicillin/clavulanate. The first peak and antibiotic prescription pattern coin-
cided with increased hospitalization rates. The second peak coincided with increase 
in severity of cases and probable development of nosocomial infections, thereby 
demonstrating increased prescription of broad-spectrum antibiotics (Abelenda- 
Alonso et al. 2020).

To provide a more accurate explanation of antimicrobial resistance, the term 
“resistome” is frequently used. The resistome comprises antimicrobial resistance 
genes (ARGs) of the pathogenic and non-pathogenic gut bacteria. The dissemina-
tion of ARGs via horizontal gene transfer and mobile genetic elements increases the 
risk of antimicrobial resistance within the intestinal microbiome (Konstantinidis 
et al. 2020). The risk is increased further with consumption of antibiotics. In a study 
involving pigs fed with a diet supplemented with antibiotics, findings showed that 
ARG abundance increased in the porcine microbiota, which led to the development 
of tolerance against drugs to which they were not exposed. In another study, it was 
observed that approximately 40% of the bacterial members within hosts harbored 
quinolone- resistance genes, even in those who had never been exposed to the drugs. 
In a study involving Finnish children, early use of macrolides demonstrated a micro-
bial profile in which depletion of Actinobacteriaceae and an increased population of 
Bacteroidetes and Proteobacteria was observed along with ARG induction (Becattini 
et al. 2016).

Since use of disinfectant and over-sanitation have the capacity to alter the micro-
bial diversity, increased exposure to hand sanitizer, disinfectants, and household 
cleaning products during this pandemic could be associated with disturbance of 
human microbiota. Moreover, the emerging links between over-sanitization and 
occurrence of non-communicable diseases and antimicrobial resistance have 
involved the human microbiome. The disruption of gut microbiota induced by dis-
infectants and over-sanitation have life-long health consequences. Regarding the 
evidence-based reduction in exposure to non-pathogenic commensal bacteria and 
gut dysbiosis, further study is warranted to investigate the effects of massive use of 
disinfectants or sanitizers during the COVID-19 pandemic. In this context, recom-
mendations to consume probiotics, pychobiotics, and fermented foods might reverse 
the consequences by alleviating dysbiosis (Ejtahed et  al. 2020). Altogether, the 
above-mentioned findings highlight the importance of judicious use of antibiotics, 
hand sanitizer, and household cleaning products to curb antimicrobial resistance 
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and microbial dysbiosis, which many seem to consider as a collateral damage of the 
COVID-19 pandemic.

4  Dietary Changes and Human Microbiota

Diet is one of the most important regulators of the human microbiome; however, the 
precise mechanisms by which diet induces microbiome variations remain elusive. 
Health benefits attained by following an optimal diet are evident as per previous 
findings and also provide a concrete foundation for leading a healthy lifestyle in the 
future. The COVID-19 pandemic has affected the global population, thereby empha-
sizing the need for awareness among communities to adopt safe practices in terms 
of food hygiene and consumption. Several governmental and non-governmental 
organizations have recognized the necessity of specific guidelines for the prognosis 
of COVID-19. A recent study has reported that implementation of the lockdown 
during COVID-19 has resulted in the practice of consumption of home-cooked, 
healthy meals that enrich beneficial microflora in the gut, which may have resulted 
in better prognosis of COVID-19 patients in India compared to those in western 
countries (Rishi et al. 2020). Nutritional modulation is vital for individuals of dif-
ferent ages, with chronic health conditions, and for therapy and management of 
several health issues. Nutritional excess or deficiency has been associated with 
immunodeficiency, and therefore adequate nutrition is critically important for 
homeostasis and for optimal functioning of the immune system to fight against 
SARS-CoV-2 infection, as well as for the development of an efficient immune sys-
tem to combat other pathogenic viruses and microorganisms (Chaari et al. 2020).

Considerable cultural and geographical differences also play a role in varied 
global food consumption patterns, thereby making nutritional optimization a chal-
lenging yet a necessary task. Several dietary recommendations were made during 
the initial phases of the pandemic and have been implemented as a part of the treat-
ment and prevention strategy against COVID-19. Fresh fruits and vegetables rich in 
nutrients and water were recommended by most studies to boost the intake of micro-
nutrients. Vitamins and minerals contribute toward healthy maintenance of physical 
barrier organs including the skin, mucus membrane, respiratory tract, and gastroin-
testinal tract to prevent viral infections. Vitamins A, C, D, E, B6, and B12 help to 
maintain cell division, proliferation, and functional aspects of immune cells. They 
provide support in inflammatory response and antibody production of T and B cells 
(https://www.eufic.org/en/food- safety). A special emphasis has been laid on vita-
mins C and D, supporting the significance of the former in individuals who are at 
risk of developing respiratory tract infections. Antioxidant properties of both vita-
mins C and D have been well established in lowering the pulmonary-associated 
infections. Vitamin D status is also associated with the severity of COVID-19 
(McCartney and Byrne 2020; Mansur 2020). Minerals such as zinc and selenium are 
known to exhibit antioxidant properties as evidenced by suppression of oxidative 
stress and augmentation of host immune responses (Beck et al. 2003; Read et al. 
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2019; Lee 2018). Mice with selenium deficiency subjected to influenza viral chal-
lenge showed an enhanced pathology in the lungs (Beck et  al. 2003). Adequate 
hydration is necessary for maintaining body homeostasis, kidney function, appro-
priate cognitive senses, and cardiovascular function (El-Sharkawy et  al. 2015). 
Hypohydration leads to exhibition of adverse health effects over varying age groups. 
Gut commensal populations like Bifidobacterium and Lactobacillus and pathogenic 
bacteria like Bacteroides fragilis and Clostridium perfringens were shown to be 
increased and decreased respectively via consumption of whey and pea protein 
extracts (Swiatecka et  al. 2011). Consumption of whole-grain food rich in non-
digestible carbohydrates reduced proinflammatory cytokines IL-6 and insulin resis-
tance (Keim and Martin 2014). Increased levels of IL-10 (an anti-inflammatory 
cytokine) were observed with the intake of butyrated maize starch (West et al. 2017). 
Fermented foods rich in live microorganisms Lactobacillus and Bifidobacterium 
that include many different strains such as L. fermentum, L. reuteri, L. paracasei, 
L. rhamnosus, L. acidophilus, L. plantarum, B. longum, B. breve, B. bifidum, and 
B. animalis were shown to reduce enteropathogens E. coli and Helicobacter pylori 
(Yang and Sheu 2012). Treg cells, which are downregulators of allergic response, 
were shown to be induced by consumption of probiotics (Feleszko et al. 2007). It 
has been demonstrated that diet-microbiome interactions are personalized, suggest-
ing that diet-microbiome studies should either include longitudinal sampling within 
individuals to identify personalized responses to dietary changes or should consider 
adequate number of participants spanning a wide range of microbiome types to 
study more generalized responses (Johnson et al. 2020). Although the dietary guide-
lines for the COVID-19 pandemic represent generic information based on healthy 
personnel, it would be beneficial to formulate dietary recommendations based on 
patients’ requirements. A range of tolerable intake levels of nutrients with respect to 
varied chronic conditions are desirable to provide specific information rather than a 
“one-size-fits-all” approach. However, extensive research should be performed to 
understand the role of dietary changes on human microbiome alterations to develop 
better diagnosis and therapeutic dietary strategies for COVID-19 patients.

5  Microbiome-Based Interventions

Host-microbe interactions play a key role in determining the health and disease 
status in humans. Microbial imbalance is related to a plethora of diseases, including 
COVID-19. A better understanding of the host-microbe interaction is important to 
develop efficient diagnosis and treatment strategies for these ailments (Varghese 
et al. 2020; Casadevall and Pirofski 2000; Lebeer and Spacova 2019). By precisely 
modulating the host microbiome, either by removing the pathogenic taxa or by rein-
troducing missing beneficial taxa, development of new therapeutic approaches for 
treatment of diseases associated with the dysbiosis of microbiota can be realized. 
Culturing of large microbial communities in the laboratory is impossible using tra-
ditional microbiology approaches. Consequently, it is difficult to comprehensively 
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profile individual microbes comprising a specific microbiome, and to understand 
their complex, multipartite interactions (Forbes et  al. 2017). Microbiome-based 
interventions should be considered to formulate strategies in the source tracking and 
monitoring of microbial communities. Tools such as FEAST, PHASTER, 
PHASTEST, and Source Tracker are utilized to conduct source tracking to deter-
mine the origins of microbial agents, especially those implicated in diseases. In a 
previous study based on analysis of sequencing datasets of fecal samples obtained 
from patients with COVID-19, highlighting alterations of the gut microbiota, 
FEAST was used to conduct source tracking of the patients, and the results showed 
extremely high accuracy of source tracking. Thus, using such approaches, the 
microbiome can be used to determine sources and patterns of dissemination, diver-
gence, and variations of pathogens (Han et al. 2020).

The structure of the microbial community observed in patients with COVID-19 
and those with community-acquired pneumonia is reportedly similar. The oral 
microbiota and its dysbiosis have been implicated in multiple diseases, including 
COVID-19, type 2 diabetes, hypertension, and cardiovascular disease; notably, the 
comorbidities mentioned herein increase the risk of COVID-19-associated mortal-
ity. Modulation of the human gut microbiota diversity has been reported to amelio-
rate conditions like enteritis and ventilator-associated pneumonia. These findings 
indicate the crucial role played by the microbiome in various diseases and the 
potential of the microbiome to be altered to mitigate disease conditions. Apart from 
the microbiome, probiotics have garnered considerable attention to combat 
COVID-19. Several studies have highlighted the role of probiotics in reduction of 
serum lipid levels and augmentation of immunity; thus, probiotic-based approaches 
may be used to modulate the host microbiome and to elicit a remarkable immune 
response against SARS-CoV-2. Maintaining a moderate exercise regimen may also 
be beneficial to maintain the homeostasis of the gut microbiome (Han et al. 2020).

Recent advances in the next-generation sequencing (NGS) technology and avail-
ability of state-of-the-art bioinformatics tools have enabled investigation of the 
microbiome, defying the need for cultivation (Hiergeist et al. 2015). NGS is now 
becoming a mainstream option for most researchers in the fight against the viral 
pandemic and they provide key insights into comprehensive structure of the micro-
biome and microbiome-host metabolic signal disruption in humans that would help 
us gain advanced knowledge on the impact of microbial imbalance and the role of 
microbial communities in human health and diseases. Several methods such as 16S 
rRNA sequencing and metagenome shotgun sequencing are available to explore the 
structural and functional composition of human microbiome. OMICs technologies 
(transcriptomics, proteomics, and metabolomics) offer newfound analytical oppor-
tunities to understand the mechanisms by which these microbial communities func-
tion and relate to their environment (Jiang et  al. 2019; Hiergeist et  al. 2015). 
Utilization of these technologies in COVID-19 research will improve our ability to 
rapidly and reproducibly characterize the microbial changes associated with 
COVID-19 severity, and it also offers an opportunity to develop fundamentally new 
diagnostic biomarkers (microbiome signatures) and therapeutics for COVID-19 
(Fig. 11.2).
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6  Conclusion

Based on the above-mentioned information, it can be inferred that the human micro-
biome can have a profound impact on the susceptibility to SARS-CoV-2 infection 
and COVID-19 severity. The involvement of gastrointestinal symptoms and respira-
tory illness in COVID-19 makes the gut and lung microbiota a potential target in 
COVID-19 management. In addition, public health actions such as social distanc-
ing, mask wearing, quarantine, and lack of physical activities have threatened the 

Fig. 11.2 Strategies for development of personalized therapy to treat COVID-19. Utilization of 
OMICS technologies in COVID-19 research will improve our ability to investigate microbial 
changes associated with COVID-19 severity and offers an opportunity to develop personalized 
therapeutics for the treatment of COVID-19
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mental health of the public which impose major negative impact on the human 
microbiome. The hope is that the new class of medicines “psychobiotics” will even-
tually provide powerful treatment for depression and other mental illness that arise 
during this pandemic. Pregnant women are at increased risk of developing compli-
cations due to COVID-19; however, risk of neonatal infection via perinatal/postna-
tal transmission is low, suggesting that vertical transmission of microbiome from 
infected mother to newborn may not affect the fetal growth and development. This 
is one area where further study is warranted. Besides these, dietary changes, life-
style modification, over-sanitation, and excessive use of antibiotics during this pan-
demic can cause severe microbiota dysbiosis. In this context, recommendations to 
consume probiotics, pychobiotics, fermented foods, and judicious use of antibiot-
ics/disinfectant might reverse the consequences by alleviating dysbiosis. Thus, the 
microbiome is a key regulator of human health and diseases and it is essentially 
important for us to protect our microbiome from harmful risk factors to promote 
disease-free life. Future studies should investigate the human microbiome and cor-
relate findings with the severity of COVID-19. Identification of the beneficial and 
harmful microbial components and their roles in early development of disease may 
help in the design of novel strategies for alteration of the microbiota to reduce dis-
ease severity. We are therefore confident that future microbiome studies will provide 
useful clinical knowledge, as well as offer a broader understanding of COVID-19 
progression which will aid in the development of necessary tools and approaches to 
better diagnose, treat, and prevent this disease.
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